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We explore the percolation threshold shift as short-range correlations are introduced and systematically
varied in binary composites. Two complementary representations of the correlations are developed in terms of
the distribution of phase bonds or, alternatively, using a set of appropriate short-range order parameters. In
either case, systematic exploration of the correlation space reveals a boundary that separates percolating from
nonpercolating structures and permits empirical equations that identify the location of the threshold for systems
of arbitrary short-range correlation states. Two- and three-dimensional site lattices with two-body correlations,
as well as a two-dimensional hexagonal bond network with three-body correlations, are explored. The ap-
proach presented here should be generalizable to more complex correlation states, including higher-order and
longer-range correlations.
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I. INTRODUCTION

Understanding the structure-property relationship in mul-
tiphase materials has been an analytical research goal for
many decades �1�. This interest is driven by the need to
accurately predict materials properties from microstructural
information and, more recently, by the possibility of optimiz-
ing one or multiple properties of a composite structure �2–4�.
In classical engineering composites, simple geometries or di-
lute loading fractions have generally permitted reasonable
analytical approximations, or at least a series of rigorous
bounds on certain properties—notably conductivity, diffusiv-
ity, and elastic constants. However, in more complex systems
with, e.g., anisotropic phase geometries, nondilute loading
levels, and high phase contrast, issues of connectivity and
topology become of principal interest. In these situations, the
theoretical framework of percolation theory becomes attrac-
tive; percolation theory handles phase connectivity naturally
through the introduction of the percolation threshold, and
complex property scaling in the vicinity of the threshold is
captured by a series of simple power-law scaling relations
�5–8�.

While percolation theory provides at least a semianalyti-
cal bridge between complex microstructures and their prop-
erties, a recurring issue with its use lies in pinpointing the
percolation threshold. This value �which is essentially the
phase fraction above which an infinitely connected phase
path emerges through the structure� is, unfortunately, gener-
ally an empirical constant. While percolation thresholds are
tabulated for ideally random phase distributions on different
lattice geometries �9,10�, any spatial correlations in the phase
distribution shift the threshold. For example, geometric
phase anisotropy is a common type of spatial correlation in
composites. There are many experimental examples in which
high aspect-ratio whiskers �e.g., chopped fibers or nano-
tubes� dramatically lower the percolation threshold as com-
pared with truly random composites �11–15�. Similarly, sys-

tems in which one phase wets the other are also highly
correlated and exhibit low thresholds �16–18�. More com-
plex problems involving two- or multiple-body interactions
among constituents also exhibit some degree of clustering or
ordering and a concomitant shift in the percolation threshold
�19–21�. By virtue of shifting the percolation thresholds, spa-
tial correlations also generally disrupt the phase-inversion
symmetry enjoyed by randomly distributed systems; i.e., the
percolation situation for phase A in a matrix of B is no longer
topologically similar to that for phase B in a matrix of A.

Although spatial correlations shift the percolation thresh-
old, under the condition that they act only over a small
length scale, the scaling relationships of percolation theory
are expected to remain valid �22–26�. For example, among
the well-known correlated percolation problems in the phys-
ics literature �22–25,27–41� the scaling exponents are known
to be constant for problems of fixed dimensionality. Such
problems include “bootstrap” �and “diffusion”� percolation
where bonds are randomly assigned but then removed �or
added� based on the local environment �23,24� and “site-
bond correlated percolation” where neighboring sites are
considered to be joined by a bond if both sites are occupied
and both of their first neighbor sites along the line of the
bond are also occupied �22,27�. Other correlated percolation
problems include those studied by Mendelson �28� where a
nonrandom distribution is used in assigning site occupancy
and geometrical clusters in the random-field Ising model
�29,30,38�.

The expectation that scaling laws remain valid for short-
range spatial correlations could represent a key advantage of
percolation theory for modeling the structure-property rela-
tionships of composites. Provided the threshold is known,
the variation of properties with changes in phase fraction is
captured by the scaling relationships, which are already es-
tablished for various properties including diffusion, conduc-
tivity, and elasticity �5,11,42–45�. Thus, in principle, all of
the topological complexity of locally correlated systems can
be collapsed into a single parameter �or set of parameters�—
the percolation threshold shift�s�—and property predictions
can be made using the scaling relationships.*schuh@mit.edu
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Many composite models attempt to describe a composite
property directly in terms of spatial correlation information
�1�. The alternate method described above, based on catalog-
ing the percolation thresholds of correlated systems, could
represent an important complementary approach to the prob-
lem. Some authors have made progress in this direction by
expressing the percolation threshold in terms of a micro-
structural state variable for relatively simple microstructure
“families.” For example, Haan and Zwanzig �46� used a se-
ries expansion method to describe phase connectivity in a
system of overlapping monosized particles. They examined
different local correlation states among the particles, which
were described by the average local excluded volume. Lee
and Torquato �47� examined the problem of overlapping par-
ticles using numerical methods and explicitly calculated the
percolation threshold as a function of the allowed degree of
overlap. Other authors have used particle shape �48� and size
distribution factors �49� as indices of local microstructural
correlations and studied the threshold shift as a function of
these factors. Heermann and Stauffer �50� explicitly plotted a
percolation phase diagram for a site-bond lattice gas perco-
lation problem, using thermodynamic temperature as a state
variable.

While the studies described above exemplify the problem
and provide useful information about some specific micro-
structures, they are neither general nor clearly generalizable
to arbitrarily correlated microstructures. What is ultimately
desired in this context is a description of the percolation
threshold in terms of given arbitrary �but physical� spatial
correlation information. It is our purpose in this paper to
outline an approach to this problem and to take an initial step
towards that goal.

II. METHODOLOGY

A conventional approach to identify the location of the
percolation threshold in a binary system is to run Monte
Carlo simulations where the phase fractions p and q �=1
− p� are systematically varied and numerous microstructures
are instantiated at each condition. For any given value of p,
the fraction of lattices that percolate, �, is assessed and the
threshold is found by identifying the value of p at which �
changes from 0 to 1. For a sufficiently large structure this
transition is rapid and finite-size scaling corrections can be
made to determine the threshold in the thermodynamic limit.
This algorithm is straightforward for lattice structures with
random occupation probabilities, because it requires a sys-
tematic sweep over just one state variable, p.

The general microstructures we are interested in are sta-
tistically homogeneous, but exhibit short- �or at least finite-�
range correlations; p must be supplemented by detailed cor-
relation information—call it C—in order to uniquely specify
the state. Our problem amounts to mapping the percolation
threshold as a function of C, requiring that the standard per-
colation algorithm described above be modified to sweep not
only through p, but also through C. The difficulty lies in
systematically probing the correlation space, which can be
quite vast. In the most general case, a complete set of
N-point correlation functions with anisotropic terms are re-

quired and every possible set of such functions must be
probed in order to completely map the percolation threshold
for arbitrary microstructures. The difficulty is thus one of
scope, and accordingly, in order to proceed we will treat only
a limited set of possible microstructures �but with an eye
toward capturing many practical cases�.

The specific binary microstructures we shall consider in
this paper satisfy the following conditions: �i� it is possible to
digitize the structure onto a regular grid without losing sig-
nificant information, and �ii� after digitization, the structure
contains only nearest-neighbor correlations. The first condi-
tion is not limiting per se because given fine enough grid
spacing, any microstructure can be described on a discrete
lattice. The second condition is limiting, in the sense that
there are many microstructures which exhibit correlations
beyond the scale of the spatial resolution. However, condi-
tion �ii� also dramatically reduces the quantity of correlation
information required to simulate every possible microstruc-
ture and thus provides a tractable first step. For simplicity,
we shall also limit our attention to statistically isotropic mi-
crostructures.

Our computational procedure essentially follows the
Yeong-Torquato algorithm outlined in Refs. �51–53�, which
uses a Monte Carlo procedure to swap phase elements of a
microstructure in such a way that migrates the system to-
wards a desired configuration. A target set of correlation in-
formation is defined, and swaps that bring the system closer
to the target are preferentially accepted. In the present case,
nearest-neighbor correlation information is used as the set of
state variables for the target and the current system configu-
ration. If only selected correlation information is used in this
Monte Carlo procedure, the random nature of the algorithm
ensures that no independent correlations arise. For example,
when the algorithm is used to yield a desired state of short-
range order, no long-range correlations are artificially intro-
duced by the method �beyond emergent order due only to the
short-range effects�.

We have considered both two- and three-dimensional �2D
and 3D� systems and various lattice geometries. In the sec-
tions that follow, we discuss several examples of the method
and report results mapping the percolation threshold in the
correlation space. In the first set of examples, we consider
systems in which the correlations are captured entirely by
pairwise information among nearest-neighbor elements �i.e.,
two-body short-range order�. In this case a single, conven-
tional short-range order parameter is the only additional state
variable required beyond p. In the second example we illus-
trate how the method can be expanded to more complex
problems and consider a case where the correlation informa-
tion requires three-body nearest-neighbor correlation infor-
mation.

III. COMPOSITE MICROSTRUCTURES WITH TWO-
BODY NEAREST-NEIGHBOR CORRELATIONS

To investigate of the effect of local correlations on perco-
lation behavior, we begin by considering two-phase compos-
ites with only pairwise, nearest-neighbor correlations. Four
geometrically unique microstructures were investigated
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where the phases are mapped onto 2D triangular, square, or
hexagonal tiles or onto 3D cubes. In percolation terminology,
these are site occupation problems. Some examples of the
two-phase composite microstructures are shown in Fig. 1
where the tiles/sites are either squares or cubes and the two
phases are shown in dark red �� phase� and light gray ��
phase�. In each case a large finite lattice with a characteristic
linear dimension of L=600–1200 tiles was used.

A. Correlation space

Simple pairwise correlations may be quantified through
Di, the fraction of tile pairs which contain i �=0, 1, or 2�
�-phase tiles. In a randomly assembled composite structure,
the distribution of pairs, Dir, can be determined as

Dir = �2

i
��1 − p�2−ipi, �1�

where p is the global �-phase fraction. Spatial correlations in
the phase distribution lead to deviations from Eq. �1�, but the
three values Di are all interdependent by virtue of the fact
that �i� they sum to unity and �ii� properly weighted they sum
to the �-phase fraction—i.e., D1+2D2=2p. Therefore, one
way in which the correlation space can be graphically repre-
sented is through a ternary diagram of the Di, as illustrated in

Fig. 1. Each point in this space uniquely identifies a micro-
structure �within the assumptions laid out above�.

An equivalent approach to quantifying and representing
the correlation space is through a scalar short-range order
parameter �, defined in terms of the Di as

� = �1 −
D1

D1r
, for

D1

D1r
� 1,

D0D2

D0rD2r
− 1, for

D1

D1r
� 1,� �2�

where Dir is given in Eq. �1�. The order parameter �, in
combination with p, fully specifies a microstructure. Accord-
ing to Eq. �2�, a perfectly ordered structure has �=−1 �i.e.,
all pairs are of the D1 type, which resembles a checkerboard
pattern on a 2D square lattice�, while a perfectly segregated
structure has � approaching 1 �i.e., all pairs are D0 and D2
types�. The variation in � with Di is illustrated in the ternary
diagram in Fig. 1 where the vertices represent the population
of each pair type. The edge connecting D0 and D2 corre-
sponds to ideally segregated structures which all have �=1.
The other two edges, connecting D0 to D1 and D1 to D2,
correspond to ordered structures with �=−1. The contours
indicate how � varies from segregated to ordered, and the
bold line in the contour plot corresponds to a random com-
posite where �=0 �i.e., the composites for which Eq. �1�
applies�. An example lattice in Fig. 1 can be used to illustrate
the procedure for determining the order parameter. In Fig.
1�a�, D0	0.5, D1	0.5, and D2=0 �i.e., there are no �-�
neighbor pairs�. This lattice has p	0.25, so Eq. �2� gives
�=−1.

Thus, there are two equivalent representations of the rel-
evant correlation space, one which is represented in the ter-
nary Di diagram of Fig. 1 and a second that may be con-
structed in the p-� plane. Both of these representations are
useful, and we shall use both of them in the following dis-
cussion. In order to probe the percolation behavior of the
two-phase composites described here, random composites
were first constructed at a specified value of p, and then the
Yeoung-Torquato algorithm was used to drive the system to-
ward a particular target in �. A variety of structures created
in this way, and which vary from ordered ��→−1� to seg-
regated ��→1�, are shown in Fig. 1. For each structure, we
also measured various topological properties of the � phase,
including the connectivity length � and the mean cluster size
S of finite clusters, as well as the strength of the “infinite”
cluster in percolating systems P. We use the standard defini-
tions of these variables �see, e.g., Ref. �9�� and have calcu-
lated them for each instantiated microstructure using the
Hoshen-Kopelman algorithm �54,55�. Each of these proper-
ties can be mapped on to the correlation space, as shown, for
example, in Fig. 2 for the connectivity length of the � phase
on hexagonal lattices. Here both equivalent representations
are shown—i.e., the ternary Di space in Fig. 2�a� and the p-�
space in Fig. 2�b�.

Two interesting points emerge from Fig. 2. First, in both
figures we can see a band along which the connectivity
length diverges. �The infinite or spanning cluster is neglected
in the calculation of �.� This divergence is associated with

FIG. 1. �Color online� Examples of the two-phase composite
microstructures �a�–�e� where the tiles/sites are either squares or
cubes and the two phases are shown in red �� phase� and gray
�� phase�. The ternary diagram of Di populations is also shown,
where the contours correspond to variations in � �Eq. �2��. Ideally
segregated structures �with �=1� lie along the edge connecting D0

and D2, while ideally ordered structures �with �=−1� lie along the
other two edges.
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the percolation threshold and will be analyzed in more detail
in the next section. Second, we see that only a portion of the
correlation space is accessible with the present simulation
procedure. For some lattices, not all combinations of p and �
or, equivalently, not all triplets Di can be achieved in a com-
posite of finite size that is otherwise random �i.e., without
introducing higher-order correlation information�. For ex-
ample, a microstructure with D1=1 is not physically possible
for hexagonal tiles, although it is for triangular, square, and
cubic tiles. On the other hand, some physically possible
states are simply inaccessible as an artifact of using a finite-
sized lattice. For example, a perfectly segregated composite
is impossible away from the thermodynamic limit; there
must be D1 pairs along the interfaces of the segregated re-
gions, and the fraction of D1 pairs approaches zero only as
the lattice becomes infinitely large. For these reasons, only a
portion of the correlation space is accessible using the
present procedure.

B. Determination of percolation thresholds

A more precise determination of the percolation threshold
was made by first dividing the correlation space into small
bins and calculating the probability of finding a percolating
cluster among the many simulated lattice instances in each
bin. The percolation threshold was operationally defined as
the locus of points where the percolation probability is 50%,
as interpolated linearly between the discrete bins. For the
lattice sizes used here, this leads to uncertainty of about
±0.01 on the location of the threshold in any state variable
�e.g., p or ��.

Figure 3 summarizes our findings regarding the effects of
topological ordering on the position of the percolation
threshold in the two complementary �and equivalent� repre-
sentations of the correlation space. In Fig. 3�a�, the percola-

tion thresholds for various lattices are represented as a line in
the ternary Di diagram, which separates those portions of the
space in which the � phase percolates from those where it
does not. Composites with a distribution Di lying above the
percolation line �i.e., nearer the D0 vertex� do not exhibit a
percolating � phase, while those below the line �i.e., nearer
the D2 vertex� percolate.

Although it is straightforward to determine the value of pc
from Fig. 3�a�, it is easier to directly observe the effects of
topology in the complementary p-� space �Fig. 3�b��. When
�=0, the value of pc matches exactly the values predicted by
standard percolation theory for a random site percolation
problem for each of the lattices �9�. Here points which lie
above the line correspond to percolating �-phase networks,
while those below the line do not percolate. In both Figs.
3�a� and 3�b�, the solid lines extend only over the portion of
the correlation space accessible in the present simulations.

There are several interesting conclusions that can be
drawn from Fig. 3. To begin, it is evident from Fig. 3�b� that
the percolation threshold for hexagonal-tile composites �tri-
angular site lattice� is, to within the accuracy of our calcula-
tions, invariant at p=0.5 regardless of the short-range topo-
logical state of the microstructure. This result is anticipated
on the basis of Mendelson’s work �28�. Although he consid-
ered a different type of spatial correlation, he used a renor-
malization group approach to show that the percolation
threshold was exactly 1/2 for the triangular site lattice �hex-
agonal tiles in the present work� in the correlated case. For

FIG. 2. �Color online� Maps of the connectivity length � of the
� phase on the triangular site lattice in the two representations of
the correlation space: �a� ternary Di space or �b� p-� space. The
connectivity length diverges along a band which corresponds to the
percolation threshold.

FIG. 3. �Color online� Percolation thresholds for various lat-
tices, represented as �a� a line in the ternary Di diagram or �b� a
curve in the p-� space. Solid lines indicate states which were ex-
plicitly accessed in the present simulations, while dotted lines indi-
cate states that were not accessible due primarily to finite-size ef-
fects. In �a�, the lines separate correlation states in which the �
phase percolates �points nearer the D2 vertex� from those where it
does not �points nearer the D0 vertex�. In �b�, the � phase percolates
for points which lie above the curve, while the � phase does not
percolate for points below the curve. The values of pc for �=0
�black dots in �b�� correspond to those for randomly assembled
lattices.
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other lattices, ordered systems ���0� have higher percola-
tion thresholds than do segregated states ���0�, which is
reasonable in light of the fact that short-range ordering, by
our definition, avoids near-neighbor contacts of like phases.
On the other hand, segregation can be very effective in low-
ering the threshold; for a segregated cube-tiled composite,
the percolation threshold approaches a value below 
0.2
�much lower than pc	0.31 for a random cubic lattice�. Both
of these trends are in line with experimental literature, in
which composites with short-range order and repulsion
among the reinforcement particles exhibit increased thresh-
old values �42,56�, while segregation lowers the threshold
�57�. Finally, it should be noted that the curves for hexago-
nal, triangular, and square tiles appear to cross p=0.5 near a
single value of � �=2/3� in Fig. 3�b�. The values p=1/2 and
�=2/3 correspond to a tile pair distribution of D0=5/12,
D1=1/6, and D2=5/12.

As a tool for practical analysis of simple correlated mi-
crostructures, the numerical results in Fig. 3 can be fitted to
yield an empirical function that gives the percolation thresh-
old as a function of the correlation state:

pc = b1�2 + b2� + b3, �3�

with lattice-specific coefficients given in Table I and implied
uncertainty on pc of ±0.01. It should be noted that the coef-
ficient b3 corresponds to the known percolation threshold for
a randomly assembled composite and is fixed to the lattice-
specific value given in Refs. �9,58–60�.

C. Scaling behavior

As noted in the Introduction, sufficiently local correla-
tions shift the percolation thresholds of the composites, but
do not change the universality class of the problem; i.e., the
critical scaling exponents are unchanged. In this section we
briefly examine the connectivity length, mean cluster size,
and infinite cluster strength and verify that their scaling be-
havior obeys this expectation for one example lattice
geometry—the hexagonal tile composites. Each of these lat-
tice properties scales with the system’s distance from the
percolation threshold:

� = C��p − pc�−	, �4a�

S = CS�p − pc�−
, �4b�

P = CP�p − pc��, �4c�

where C�, CS, and CP are amplitude prefactors and 	, 
, and
� are scaling exponents which depend only on the dimen-
sionality of the lattice.

For two-dimensional networks, the values of 	, 
, and �
are 4/3, 43/18, and 5/36, respectively �9�, as assessed for
random composites—i.e., along the vertical line along �=0
in Fig. 2�b�. Inspecting this figure, it is clear that for different
values of �, the divergence of the connectivity length at the
threshold changes; this is a signature that either the scaling
exponent 	 or the amplitude prefactor C� changes with the
state of order in the system. In Fig. 4, we explore the scaling
laws of Eq. �4� at a few selected values of � for conditions
above ��, S, and P� and below �� and S� the percolation
threshold. The data series are offset from one another by
factors of 10, and the best-fit lines in the plots have been
forced to the slopes given by Eq. �4�. For each property, the
data have essentially the same slope, independent of �. As
expected, therefore, the short-range correlations in the net-
work do not affect the scaling exponents.

TABLE I. Lattice specific coefficients for Eq. �3�, which gives
the percolation threshold as a function of the correlation state for
2D and 3D site lattices. The coefficient b3 corresponds to the value
of pc for a randomly assembled composite �9,58–60�.

Triangular Square Hexagonal Simple cubic

b1 −0.1506 −0.0515 0 0

b2 −0.1959 −0.1190 0 −0.2734

b3 0.6970 0.5927 0.5 0.3116

FIG. 4. �Color online� For hexagonally tiled composites �trian-
gular site lattices� with different topological states ��=−0.4, 0.0,
0.2, and 0.4�, the lattice properties are plotted as a function of
distance from the percolation threshold for values of p above the
threshold �a�, �c�, �e� and below the threshold �b�, �d�. The series are
offset from one another by factors of 10 �with �=0.0 having no
offset�, and the best-fit lines in the plots have been forced to the
slopes given by Eq. �4�.

CORRELATION-SPACE DESCRIPTION OF THE… PHYSICAL REVIEW E 76, 041108 �2007�

041108-5



IV. BOND NETWORKS WITH THREE-BODY NEAREST-
NEIGHBOR CORRELATIONS

In this section we attempt to illustrate how the methodol-
ogy applied above can be systematically extended to more
complex situations. As a complement to the site problems
addressed above, here we shall look at a bond lattice—the
hexagonal bond lattice in 2D. We will also extend the corre-
lation information to include three-body nearest-neighbor in-
formation. In addition to providing an illustrative example,
this geometry also connects to an emerging class of percola-
tion problems in polycrystalline materials, where grain
boundaries of different atomic structure are treated as phase
species and dominate the structure-property relationship
�61–70�. For example, grain boundary types with “special”
misorientation relationships can have a positive impact on
various percolative properties: superconductivity �71–74�,
diffusivity �75�, cracking �67,68�, and creep �76� being ex-
amples treated quantitatively to date.

A. Definition of correlation functions

We begin by again defining a distribution to quantify the
local connectivity of the microstructure. The coordination
number of the hexagonal bond lattice is Z=3, so the local
distribution of triplets, Ji, serves an analogous function to Di
in the previous example. �Ji is commonly measured and
modeled in the grain boundary literature and is called the
triple junction distribution �77,78�.� In a randomly assembled
bond lattice we have

Jir = �3

i
��1 − p�3−ipi, �5�

where p is the global fraction of �-phase bonds and the
subscript r denotes a random distribution.

In analogy to the ternary diagram used to represent the Di
in Fig. 1, a quaternary “coordination tetrahedron” may be
used to represent the correlation space for a problem with
three-body correlations �Fig. 5�. The equivalent representa-
tion of the correlation space �in terms of short-range order
parameters� must also be expanded to account for the addi-
tional information content of the three-body correlation in-
formation. For example, we may define two topological or-
der parameters: �, which differentiates states of segregation
from ordering much as � did in our previous example, and �,
which differentiates the tendency for bonds to form either
compact or elongated clusters. These are defined as

� = �1 − j� for j� � 1,

�j��−1 − 1 for j� � 1,
 �6a�

� = �1 − j� for j� � 1,

�j��−1 − 1 for j� � 1,
 �6b�

where

j� = � J1 + J2

J0 + J3
�� J0r + J3r

J1r + J2r
� , �7a�

j� =
J2

J1

J1r

J2r
. �7b�

It is useful to apply Eqs. �5�–�7� to an example network to
determine the topological order parameters. In Fig. 5�e�,
nearly all triple junctions are comprised of two or three
�-phase bonds �i.e., J0	0, J1	0, J2	0.5, and J3	0.5�.
This lattice has p	5/6, and use of Eqs. �6� and �7� gives
�=−2/7 and �=−1.

Both � and � exist on �−1, 1� and are exactly zero for a
randomly assembled network. Since the two topological pa-
rameters have independent signs, there are four possible
combinations for the signs of � and �, which represent to-
pologically unique states: the network can be composed of
either compact or elongated clusters, which may be arranged
in either an ordered or segregated fashion. Figure 5 schemati-
cally lays out these possibilities, with reference to the posi-
tion that each network structure occupies in the tetrahedral Ji
space. Each of the four sign combinations for � and � occu-
pies its own subspace, and these four subspaces all converge
at the points where p=0 �J0 vertex� and p=1 �J3 vertex�.

FIG. 5. �Color online� Top: a quaternary “coordination tetrahe-
dron” is used to represent the correlation space for a problem with
three-body correlations described by the populations J0, J1, J2 and
J3. The coordination tetrahedron contains four distinct regions
where � and � �Eqs. �6� and �7�� are independently positive or
negative; these four subspaces all converge at the points where p
=0 �J0 vertex� and p=1 �J3 vertex�. Bottom: several schematic net-
works are shown that illustrate the various topological states that
are possible. In �a�–�f�, dark red lines are �-phase bonds and light
gray lines are �-phase bonds. The labels �a�–�f� in the top indicate
the position of the network in the coordination tetrahedron.
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Interestingly, this implies that there exist trajectories from
p=0 to 1 which lie exclusively in each of the four subspaces.
Figure 5 also shows several schematic networks that illus-
trate the various topological states that are possible. For ex-
ample, points along the J0-J3 edge in Fig. 5 describe a seg-
regated structure as shown in Fig. 5�a� for a network with
�	1. In contrast, a network described by a point along the
J1-J2 edge assumes an ordered structure with �	−1 �Fig.
5�f��. The prominence of J1 triplets, especially in points near
the J0-J1-J3 face, tends to promote compact cluster structures
���0�; two examples with �	1 are illustrated in Figs. 5�b�
and 5�d�. In contrast, an abundance of J2 triplets on the
J0-J2-J3 face leads to elongated cluster structures. Figure 5
also shows two networks with �	−1 �Figs. 5�c� and 5�e��.

B. Determination of the percolation boundary

In our example focusing on two-body correlations, states
which percolated were separated from states which did not
percolate by a curve in either the two-dimensional Di space
or the p-� space �Fig. 3�. The extension to three-body inter-
actions renders the percolation boundary a surface cutting
through either the coordination tetrahedron of Ji or the p-�-�
space. Once again, we employed the Yeong-Torquato simu-
lated annealing approach to systematically probe this space.
The coordination tetrahedron was divided into bins 0.01 in
width along J0, J1, J2, and J3, each simulation yielding a
network lying in one bin. The fraction of networks which
contained a percolating cluster was determined, and the sur-
face of 50% percolation probability was again operationally
defined as the percolation condition. It is important to note
again that some portions of the correlation space were inac-
cessible to the algorithm due to, e.g., finite-size effects.

Figure 6 shows representations of the percolation bound-
ary in the two equivalent forms of the correlation space. In
both Figs. 6�a� and 6�b�, the upper portion of the diagram
represents the structures in which the �-phase bonds perco-
late. To within the uncertainty of the simulations �and bear-
ing in mind that the edges of the correlation space are some-
times inaccessible� the data suggest that the points J2=1 and
J0=J3= 1

2 may lie on the percolation surface. The effect of
variations in the network topology on the percolation surface
can be more easily visualized in Fig. 6�b�, where changes in
pc with � and � are plotted. There are points within the
volume of Fig. 6�b� which do not correspond to a physical
combination of triplets �i.e., 0�Ji�1 for all i�; the percola-
tion boundary presented in Fig. 6�b� is shown only for physi-
cally attainable microstructures. As � approaches −1, the per-
colation threshold decreases, while ��0 requires an increase
in p for percolation to occur; more elongated clusters pro-
mote earlier percolation. Similar to our earlier observations
in the site-lattice problem, the percolation threshold is lower
for ��0 where the network is segregated and higher where
it is ordered. These trends can also be seen more clearly by
looking at the cross-sectional views of the p-�-� space in
Fig. 7. Here the connectivity length is plotted for two or-
thogonal sections through the space and the band of high
connectivity length denotes the percolation threshold.

Finally, an empirical fit gives the approximate location of
the threshold as a function of the correlation state as

pc = d1 + d2� + d3�2 − d4� + d5�� − d6�2, �8�

with the coefficients assembled in Table II. Note that the
value of d1 has been fixed to the known result of pc=1
−2 sin� /18�	0.6527 for the random hexagonal bond lat-
tice �9�.

C. Connection to the literature on grain boundary networks

In the literature addressing percolation problems on grain
boundary networks, crystallographic textures are assigned to
the grains of a polycrystal and the phase character of the
grain boundaries is subsequently determined based on, e.g.,
misorientation of the crystals meeting at the boundary
�61–63,66,67�. Even in the absence of orientation correla-
tions among the grains, the granular nature of the solid re-
quires correlations in the character of the boundaries between
them. Consequently, a single crystallographic texture creates
a single statistical microstructure occupying a single point in
the correlation space. By systematically varying the texture,
different correlation states on the bond lattice �grain bound-
ary network� are effected. In the representations shown in

FIG. 6. �Color online� Representations of the percolation bound-
ary in �a� the coordination tetrahedron and �b� the p-�-� space. In
both, the upper portion of the diagram represents the structures in
which the �-phase bonds percolate. In �b�, the percolation boundary
is shown only for points which correspond to a physical combina-
tion of triplets �i.e., 0�Ji�1 for all i�. Three trajectories are also
shown which correspond to microstructures with systematically var-
ied textures whose thresholds were found previously �62�. The color
change in each trajectory represents the percolation threshold which
coincides with the surface found here.
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Fig. 6, varying the texture function is equivalent to drawing
a trajectory through the correlation space. For example, very
sharp textures often give p=1 and broadening the texture
function leads to a smooth trajectory eventually connecting
to p=0.

In Fig. 6, three trajectories are shown. The first is that for
a randomly assembled lattice, as given by Eqs. �5� and �6�; in
the p-�-� space �Fig. 6�b��, this is simply a vertical line
where �=�=0 for all p. The other trajectories are the two
phase-inversion complements of a typical crystallographi-
cally constrained system based on a family of 2D crystal
textures labeled as the “fiber texture” family �61�. This fam-
ily of textures is relevant to the present discussion because in
this case crystallography induces strong near-neighbor three-
body correlations, but does not have much impact at longer
length scales �64�. In Fig. 6 it is clear that these trajectories
deviate significantly from that of a randomly assembled lat-
tice for all p.

The color change in each trajectory in Fig. 6 represents
the percolation threshold �available in Ref. �62�. for the crys-
tallographic systems�. All threshold locations coincide well
with the percolation surface found in the present work and
are within the cited error of the value returned by Eq. �8�.
This therefore comprises one instance where the dominant
physical correlations can be succinctly captured in a small
space of order parameters and used to appreciate a problem
of practical interest. We expect that other systems of 2D
crystallographic texture may be similarly approachable with
the present method. In the more general case of 3D textures
additional correlations are known to arise at larger length
scales �64� and these correlations would need to be added to
the correlation space in order for the present approach to be
generally applicable.

V. CONCLUSIONS

Although finite-range correlations are known to shift the
percolation threshold in composite microstructures, a general

framework permitting estimation of the threshold for arbi-
trary correlations is lacking. We propose that this problem
may be addressed systematically by instantiating various cor-
relation states in simulated microstructures and determining
the threshold location as a function of the correlations. The
reason that this problem has not been approached in a gen-
eral fashion to date is almost certainly the issue of scope:
systematic exploration of correlations over many scales and
including anisotropic terms would be a large undertaking. In
this paper we have taken a first step towards this goal by
exhaustively studying short-range correlated microstructures
on a few important lattices. In particular, we report numerical
estimates of the percolation threshold for two-dimensional
square, hexagonal, and triangular site lattices, as well as
three-dimensional cube lattices, with arbitrary �but physi-
cally realizable� nearest-neighbor correlations. We also pro-
vide results for a two-dimensional hexagonal bond network
in which the nearest-neighbor correlations are of the three-
body type.

By defining a “correlation space” in which all short-range
correlated microstructures exist, it is possible to identify the
percolation threshold as a boundary dividing the space into a
region in which all microstructures percolate and one in
which they do not. The correlations can be described using
bond fractions, or appropriate order parameters may be de-
fined; such order parameters are independent indices of the
correlations in the system and complement the phase fraction
p as state variables. We anticipate that these results may be
useful in providing a connection between microstructure and
properties of some simple correlated composite structures.
One physical example where short-range correlations are
sufficient to treat a physically relevant problem is
provided—the emerging class of percolation problems on
grain boundary networks.

With the percolation thresholds pc provided in this work
and existing estimates for the property scaling exponents
with distance from the threshold, �p–pc�, improved property
predictions should be possible, especially for microstructures
close to the threshold. Finally, we suggest that the basic ap-
proach taken in this paper may be extended to more complex
�and more physically realistic� correlation states by system-
atically increasing the dimensionality of the correlation
space.
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TABLE II. Lattice specific coefficients for Eq. �8�, which gives
the percolation threshold as a function of the correlation state for
the honeycomb bond lattice. The coefficient d1 corresponds to the
value of pc for a randomly assembled hexagonal bond lattice �9�.

i 1 2 3 4 5 6

di 0.6527 0.0651 0.0117 −0.0961 0.0233 −0.0715

FIG. 7. �Color online� Partial maps of the connectivity length
for two-dimensional bond percolation on the hexagonal lattice, with
three-body nearest-neighbor correlations. Two cross-sectional views
of the p-�-� space are shown: �a� �=0 and �b� �=0. The connec-
tivity length diverges along a band which corresponds to the perco-
lation threshold.
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